32=18x+1/2*9.81x^2

Simple and best practice solution for 32=18x+1/2*9.81x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 32=18x+1/2*9.81x^2 equation:



32=18x+1/2*9.81x^2
We move all terms to the left:
32-(18x+1/2*9.81x^2)=0
Domain of the equation: 2*9.81x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-18x-1/2*9.81x^2+32=0
We multiply all the terms by the denominator
-18x*2*9.81x^2+32*2*9.81x^2-1=0
Wy multiply elements
-324x^2*9+576x*9-1=0
Wy multiply elements
-2916x^2+5184x-1=0
a = -2916; b = 5184; c = -1;
Δ = b2-4ac
Δ = 51842-4·(-2916)·(-1)
Δ = 26862192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26862192}=\sqrt{571536*47}=\sqrt{571536}*\sqrt{47}=756\sqrt{47}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5184)-756\sqrt{47}}{2*-2916}=\frac{-5184-756\sqrt{47}}{-5832} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5184)+756\sqrt{47}}{2*-2916}=\frac{-5184+756\sqrt{47}}{-5832} $

See similar equations:

| 2(3b+-(=40 | | 6=2(f+1) | | 3x+32=7x-4 | | 3x+33=7x-4 | | -14-(-14)=x/6 | | 12x+1=14x-5 | | -(c-15)+11=12 | | 5(3c-1)-5=12c+5 | | –(c−15)+11=12 | | -(p+3)=-2 | | 8(4x+6)+(x+7)=7 | | 2x+`18-1=33 | | 14x-17=0 | | 12x+19x-8+2=2x+2-8 | | -2×(x+3)=12 | | 3X2-9x=5670 | | 5/x=8/40 | | 8+2(3x+1)=2(3x+1) | | X+2/5x+4=32 | | 7x-7x=6-6 | | 5/6=10/t | | 3(x+60)=42 | | -7+3=-x-3 | | (b^2-5b)^b-36=0 | | x+2=2-3x | | -2(g+3)+-9=-3 | | 5x+9=39+2x | | y/4=30.5 | | y/4=20.5 | | –2(g+3)+–9=–3 | | 10x-3x+3=18 | | 4^x-3×5^x=40 |

Equations solver categories